
Cross-Stack Characterization and 
Solid State Drive-Based Near Data 
Processing for Recommendation 

Workloads

Samuel Hsia*, Mark Wilkening*, Udit Gupta, 

Caroline Trippel, Carole-Jean Wu, Gu-Yeon Wei, David Brooks

At Boston Area Architecture Workshop (BARC 2021)

* Indicates equal contribution



2



3



4



5



6



What is recommendation

7



What is recommendation

8

You Item Preferences



What is recommendation

9

You Item Preferences Item Recommendations

Recommendati
on

System



Why should computer architects 
care



Why should computer architects 
care

Infrastructure Demands

Facebook Datacenters’
AI Inference Cycles [1]

[1] “The Architectural Implications of Facebook’s DNN-based Personalized Recommendation Models” (HPCA 2020) Gupta, et. al.



Why should computer architects 
care

Infrastructure Demands

Facebook Datacenters’
AI Inference Cycles [1]

[1] “The Architectural Implications of Facebook’s DNN-based Personalized Recommendation Models” (HPCA 2020) Gupta, et. al.
[2] “Deep Learning Training in Facebook Data Centers: Design of Scale-up and Scale-out Systems” (arXiv 2020) Naumov, et. al.

Also accounts for 50% of training demand [2]



Why should computer architects 
care

Infrastructure Demands Unique Compute 
Requirements

Facebook Datacenters’
AI Inference Cycles [1]

[1] “The Architectural Implications of Facebook’s DNN-based Personalized Recommendation Models” (HPCA 2020) Gupta, et. al.
[2] “Deep Learning Training in Facebook Data Centers: Design of Scale-up and Scale-out Systems” (arXiv 2020) Naumov, et. al.

Also accounts for 50% of training demand [2]

Different than 
CNNs and 

RNNs



Why should computer architects 
care

Infrastructure Demands Unique Compute 
Requirements

Facebook Datacenters’
AI Inference Cycles [1]

[1] “The Architectural Implications of Facebook’s DNN-based Personalized Recommendation Models” (HPCA 2020) Gupta, et. al.
[2] “Deep Learning Training in Facebook Data Centers: Design of Scale-up and Scale-out Systems” (arXiv 2020) Naumov, et. al.

Also accounts for 50% of training demand [2]

Different than 
CNNs and 

RNNs

Model Diversity



This talk

15



This talk

16

Characterization

[IISWC ‘20]



This talk

17

Characterization RecSSD

[IISWC ‘20] [ASPLOS ‘21]



This talk

18

Characterization RecSSD

[IISWC ‘20] [ASPLOS ‘21]



Improving recommendation requires 
cross-stack characterization

19



Improving recommendation requires 
cross-stack characterization

20

Algorithms

Application variety 
leads to 

algorithm 
diversity



Improving recommendation requires 
cross-stack characterization

21

Algorithms Software

Application variety 
leads to 

algorithm 
diversity

Algorithms are 
implemented with 

different software 
frameworks



Improving recommendation requires 
cross-stack characterization

22

Algorithms Software Hardware

Application variety 
leads to 

algorithm 
diversity

Algorithms are 
implemented with 

different software 
frameworks

Recommendation is 
deployed on 

heterogenous 
hardware



Improving recommendation requires 
cross-stack characterization

23

Algorithms Software Hardware

Application variety 
leads to 

algorithm 
diversity

Algorithms are 
implemented with 

different software 
frameworks

Recommendation is 
deployed on 

heterogenous 
hardware

Different layers of the execution stack have different 
bottlenecks!



Characterization

24

Question: What are the bottlenecks of each layer and how do they affect one another? 



25

Question: What are the bottlenecks of each layer and how do they affect one another? 

What do industry-representative algorithms (model architectures) 
look like?

Characterization



26

Question: What are the bottlenecks of each layer and how do they affect one another? 

What do industry-representative algorithms (model architectures) 
look like?

What are the performance trends of deploying recommendation on CPUs 
and GPUs?

Characterization



27

Question: What are the bottlenecks of each layer and how do they affect one another? 

What do industry-representative algorithms (model architectures) 
look like?

What are the performance trends of deploying recommendation on CPUs 
and GPUs?

Can we explain the performance trends with software level operators?

Characterization



28

Question: What are the bottlenecks of each layer and how do they affect one another? 

What do industry-representative algorithms (model architectures) 
look like?

What are the performance trends of deploying recommendation on CPUs 
and GPUs?

Can we explain the performance trends with software level operators?

Can we explain the performance trends with microarchitectural analysis?

Characterization



29

Question: What are the bottlenecks of each layer and how do they affect one another? 

What do industry-representative algorithms (model architectures) 
look like?

What are the performance trends of deploying recommendation on CPUs 
and GPUs?

Can we explain the performance trends with software level operators?

Can we explain the performance trends with microarchitectural analysis?

Characterization



Deep Recommendation Model 
Architecture

30



Deep Recommendation Model 
Architecture

31



Deep Recommendation Model 
Architecture

32



Deep Recommendation Model 
Architecture

33



Deep Recommendation Model 
Architecture

34



35

Question: What are the bottlenecks of each layer and how do they affect one another? 

What do industry-representative algorithms (model architectures) 
look like?

What are the performance trends of deploying recommendation on CPUs 
and GPUs?

Can we explain the performance trends with software level operators?

Can we explain the performance trends with microarchitectural analysis?

Characterization



Systems Platforms Evaluation

36

MT-WnD

Batch Size

S
p

e
e
d

u
p

 
R

e
la

ti
v
e
 t

o
 

B
ro

a
d

w
e
ll

Cascade Lake

1080 Ti GPU
T4 GPU



Systems Platforms Evaluation

37

MT-WnD

Batch Size
Great speedup on 

GPUs

S
p

e
e
d

u
p

 
R

e
la

ti
v
e
 t

o
 

B
ro

a
d

w
e
ll

Cascade Lake

1080 Ti GPU
T4 GPU

>10
x



Systems Platforms Evaluation

38

MT-WnD

Batch Size

Great speedup on GPUs
Rely on Fully-

Connected (FC) 
stacks

S
p

e
e
d

u
p

 
R

e
la

ti
v
e
 t

o
 

B
ro

a
d

w
e
ll

Cascade Lake

1080 Ti GPU
T4 GPU

>10
x



Systems Platforms Evaluation

MT-WnD

Great speedup on GPUs

Rely on Fully-Connected 
(FC) stacks

S
p

e
e
d

u
p

RM1

Bad speedup on GPUs

Rely on Embedding 
lookups

Cascade Lake

1080 Ti GPU
T4 GPU

DIN DIEN

Implements Attention Mechanism

DIN bad on GPUs
DIEN good on GPUs

Batch Size

Model architecture and use-case play important roles in determining 
acceleration



Optimal hardware varies based on model 
architecture and input batch size

40



41

Question: What are the bottlenecks of each layer and how do they affect one another? 

What do industry-representative algorithms (model architectures) 
look like?

What are the performance trends of deploying recommendation on CPUs 
and GPUs?

Can we explain the performance trends with software level operators?

Can we explain the performance trends with microarchitectural analysis?

Characterization



Operator Breakdowns

42

RM1MT-WnD DIENDIN

B
ro

ad
w

el
l

B
re

ak
d
o
w

n
 (%

)



Operator Breakdowns

43

RM1MT-WnD DIENDIN

B
ro

ad
w

el
l

B
re

ak
d
o
w

n
 (%

)

10
80

 T
i

B
re

ak
d
o
w

n
(%

)

C
as

ca
d
e 

L
ak

e
B

re
ak

d
o
w

n
 (%

)

CPUs GPUs

RM1MT-WnD DIENDIN

T
4

B
re

ak
d
o
w

n
(%

)



Operator Breakdowns

44

RM1MT-WnD DIENDIN

B
ro

ad
w

el
l

B
re

ak
d
o
w

n
 (%

)

10
80

 T
i

B
re

ak
d
o
w

n
(%

)

C
as

ca
d
e 

L
ak

e
B

re
ak

d
o
w

n
 (%

)

CPUs GPUs

RM1MT-WnD DIENDIN

T
4

B
re

ak
d
o
w

n
(%

)

GPUs accelerate models dominated by FC operators on CPUs

by reducing the FC operator



Operator Breakdowns

45

RM1MT-WnD DIENDIN

B
ro

ad
w

el
l

B
re

ak
d
o
w

n
 (%

)

10
80

 T
i

B
re

ak
d
o
w

n
(%

)

C
as

ca
d
e 

L
ak

e
B

re
ak

d
o
w

n
 (%

)

CPUs GPUs

RM1MT-WnD DIENDIN

T
4

B
re

ak
d
o
w

n
(%

)

GPUs struggle with models dominated by Embedding operators on 
CPUs

due to data communication overheads



Operator Breakdowns

46

RM1MT-WnD DIENDIN

B
ro

ad
w

el
l

B
re

ak
d
o
w

n
 (%

)

10
80

 T
i

B
re

ak
d
o
w

n
(%

)

C
as

ca
d
e 

L
ak

e
B

re
ak

d
o
w

n
 (%

)

CPUs GPUs

RM1MT-WnD DIENDIN

T
4

B
re

ak
d
o
w

n
(%

)

Different generations of the same platform type (i.e., CPU/GPU) 

affect exact operator usages but retain general trends. 



47

Question: What are the bottlenecks of each layer and how do they affect one another? 

What do industry-representative algorithms (model architectures) 
look like?

What are the performance trends of deploying recommendation on CPUs 
and GPUs?

Can we explain the performance trends with software level operators?

Can we explain the performance trends with microarchitectural analysis?

Characterization



TopDown Background

Latency Bound
Bandwidth Bound

48

Core Bound
Memory Bound



TopDown Background

Latency Bound
i-cache miss

Bandwidth Bound
instruction decoder inefficiency

49

Core Bound

sub-optimal functional units

Memory Bound

d-cache miss/bandwidth



TopDown Pipeline Slot Breakdowns

50

Pipeline Slot Breakdown (%)

RM1

MT-WnD

DIEN

DIN

B
ro

ad
w

ell
C

ascad
e
 L

ake

RM1

MT-WnD

DIEN

DIN



On Broadwell, FC-dominated models 
are limited by insufficient functional units

51

Pipeline Slot Breakdown (%)

RM1

MT-WnD

DIEN

DIN

B
ro

ad
w

ell
C

ascad
e
 L

ake

RM1

MT-WnD

DIEN

DIN



On Broadwell, FC-dominated models 
are limited by insufficient functional units

52

Pipeline Slot Breakdown (%)

RM1

MT-WnD

DIEN

DIN

B
ro

ad
w

ell
C

ascad
e
 L

ake

RM1

MT-WnD

DIEN

DIN



On Broadwell, FC-dominated models 
are limited by insufficient functional units

53

Pipeline Slot Breakdown (%)

RM1

MT-WnD

DIEN

DIN

B
ro

ad
w

ell
C

ascad
e
 L

ake

RM1

MT-WnD

DIEN

DIN

B
ac

ke
n
d
 

C
o
re

:M
em

o
ry

 B
o
u
n
d

R
at

io
s

Broadwell Cascade Lake

RM1MT-WnD DIENDIN RM1MT-WnD DIENDIN



On Broadwell, FC-dominated models 
are limited by insufficient functional units

54

Pipeline Slot Breakdown (%)

RM1

MT-WnD

DIEN

DIN

B
ro

ad
w

ell
C

ascad
e
 L

ake

RM1

MT-WnD

DIEN

DIN

B
ac

ke
n
d
 

C
o
re

:M
em

o
ry

 B
o
u
n
d

R
at

io
s

Broadwell Cascade Lake

RM1MT-WnD DIENDIN RM1MT-WnD DIENDIN

MT-WnD core 
bound!



B
ac

ke
n
d
 

C
o
re

:M
em

o
ry

 B
o
u
n
d

R
at

io
s

Broadwell Cascade Lake

P
er

ce
n
ta

g
e 

o
f 

C
yc

le
s 

(%
)

RM1MT-WnD DIENDIN RM1MT-WnD DIENDIN

On Broadwell, FC-dominated models 
are limited by insufficient functional units

55

Pipeline Slot Breakdown (%)

RM1

MT-WnD

DIEN

DIN

B
ro

ad
w

ell
C

ascad
e
 L

ake

RM1

MT-WnD

DIEN

DIN

Available functional units 
saturated



B
ac

ke
n
d
 

C
o
re

:M
em

o
ry

 B
o
u
n
d

R
at

io
s

Broadwell Cascade Lake

P
er

ce
n
ta

g
e 

o
f 

C
yc

le
s 

(%
)

RM1MT-WnD DIENDIN RM1MT-WnD DIENDIN

On Cascade Lake, FC-dominated models benefit from wider 
SIMD, shifting bottlenecks to memory subsystem

56

Pipeline Slot Breakdown (%)

RM1

MT-WnD

DIEN

DIN

B
ro

ad
w

ell
C

ascad
e
 L

ake

RM1

MT-WnD

DIEN

DIN



Attention-based models suffer from frontend latency 
(L1 instruction-cache misses)

57

RM1

MT-WnD

DIEN

DIN

Broadwell L1 cache instruction MPKI



Models with more embedding table lookups suffer from 
instruction decoder bottlenecks

58

RM1MT-WnD DIENDIN

P
er

ce
n
ta

g
e 

o
f 

C
yc

le
s 

(%
)

CPU Cycles limited due to Frontend Decoder Pipeline

Broadwell Frontend Decoder Pipeline



Models with more embedding table lookups suffer from 
instruction decoder bottlenecks

59

RM1MT-WnD DIENDIN

P
er

ce
n
ta

g
e 

o
f 

C
yc

le
s 

(%
)

CPU Cycles limited due to Frontend Decoder Pipeline

Broadwell Frontend Decoder Pipeline



Models with more embedding table lookups suffer from 
instruction decoder bottlenecks

60

RM1MT-WnD DIENDIN

P
er

ce
n
ta

g
e 

o
f 

C
yc

le
s 

(%
)

CPU Cycles limited due to Frontend Decoder Pipeline

Broadwell Frontend Decoder Pipeline

DSB 
ineffectiv

e for 
RM1!



Summary of Microarchitectural 
Effects

Type of Model Microarchitectural Insight

FC Heavy On Broadwell, insufficient 
functional units

On Cascade Lake, sub-optimal 
memory subsystem

Attention Heavy Frontend Latency
L1 i-cache miss rate (L1 i-MPKI)

Embedding Heavy Frontend Bandwidth
Decoded i-cache (DSB)

61



62

Question: What are the bottlenecks of each layer and how do they affect one another? 

What do industry-representative algorithms (model architectures) 
look like?

What are the performance trends of deploying recommendation on CPUs 
and GPUs?

Can we explain the performance trends with software level operators?

Can we explain the performance trends with microarchitectural analysis?

Characterization



Characterization

63

More algorithms More 
characterization Open-Source

More industry-
representative deep 

recommendation models

More microarchitectural 
insights based on 

detailed PMU counter 
analysis

Model implementations 
and experiment scripts 

open-sourced:
https://github.com/

harvard-acc/DeepRecSys

P
er

ce
n
ta

g
e 

o
f

R
et

ir
ed

 In
st

ru
ct

io
n
s 

(%
)

RM1
RM2

NCF
RM3

WnD
MT-W

nD
DIEN

DIN RM1
RM2

NCF
RM3

WnD
MT-W

nD
DIEN

DIN

Broadwell Cascade Lake



This talk

64

Characterization RecSSD

[IISWC ‘20] [ASPLOS ‘21]



Computational Trends in 
Recommendation



Computational Trends in 
Recommendation

66

More Features, More Accuracy

0.6950

0.7050

0.7150

0.7250

0.7350

0.7450

Nonzero Weights

T
e
st

 A
U

C

[1]

[1] “Training Massive Scale Deep Learning Ads Systems with GPUs and SSDs”, PeRSonAl at ISCA 2020, Weijie Zhao



Computational Trends in 
Recommendation

67

More Features, More Accuracy … And Memory Capacity

0.6950

0.7050

0.7150

0.7250

0.7350

0.7450

Nonzero Weights

T
e
st

 A
U

C

[1]

[1] “Training Massive Scale Deep Learning Ads Systems with GPUs and SSDs”, PeRSonAl at ISCA 2020, Weijie Zhao
[2] “Understanding Capacity-Driven Scale-Out Neural Recommendation Inference”, arXiv:2011.02084, Lui et. al.

[2]



High-Capacity Flash vs. DRAM



High-Capacity Flash vs. DRAM

Cost

O(5-10X)

O(X)



High-Capacity Flash vs. DRAM

70

Cost Read Latency

O(10ns)

O(10us)

O(5-10X)

O(X)



High-Capacity Flash vs. DRAM

Cost Read LatencyWrite Latency

O(10ns)

O(10us)

O(10ns)

O(1ms)

O(5-10X)

O(X)



High-Capacity Flash vs. DRAM

72

Cost Read LatencyWrite Latency
Random 4KB 
Read B/W

O(10ns)

O(10us)

O(10ns)

O(1ms) O(2-3GB/
s)

O(75GB/s)O(5-10X)

O(X)



High-Capacity Flash vs. DRAM

73

Cost Read LatencyWrite Latency
Random 4KB 
Read B/W

O(10ns)

O(10us)

O(10ns)

O(1ms) O(2-3GB/
s)

O(75GB/s)O(5-10X)

O(X)

Random 128B

O(75GB/s)

O(10MB/s)



Flash SSDs for Recommendation

74



Flash SSDs for Recommendation

75

3 Orders of magnitude slower 
embedding operations

Low Bandwidth
Page Size vs. Access Size

Software Overheads in PCIe Access



Flash SSDs for Recommendation

76

3 Orders of magnitude slower 
embedding operations

Low Bandwidth
Page Size vs. Access Size

Software Overheads in PCIe Access



Flash SSDs for Recommendation

77

3 Orders of magnitude slower 
embedding operations

Low Bandwidth
Page Size vs. Access Size

Software Overheads in PCIe Access

Significant slowdown 
in embedding 

dominated models



Problems with Flash for 
Recommendation

78

Low Bandwidth Page and Access Size 
Mismatch

Software Overheads 
in PCIe Access



Problems with Flash for 
Recommendation

79

Hit-rates vary wildly across 
embedding tables
from 10% to 90%

Low Bandwidth

DRAM Caching

Page and Access Size 
Mismatch

Software Overheads 
in PCIe Access



Problems with Flash for 
Recommendation

80

Hit-rates vary wildly across 
embedding tables
from 10% to 90%

Low Bandwidth

DRAM Caching

Page and Access Size 
Mismatch

Table re-ordering, 
advanced caching

Bandana [1]

Software Overheads 
in PCIe Access

[1] “Bandana: Using Non-volatile Memory for Storing Deep 
Learning Models”, SysML 19, Eisenman et. al.

Smaller flash page sizes 
in SSD hardware, byte 

addressable NVM



Problems with Flash for 
Recommendation

81

Hit-rates vary wildly across 
embedding tables
from 10% to 90%

Low Bandwidth

DRAM Caching

Page and Access Size 
Mismatch

Table re-ordering, 
advanced caching

Bandana [1]

Software Overheads 
in PCIe Access

Near Data Processing

RecSSD [2]

[1] “Bandana: Using Non-volatile Memory for Storing Deep 
Learning Models”, SysML 19, Eisenman et. al.

[2] “RecSSD: Near Data Processing forSolid State Drive Based 
Recommendation Inference”, ASPLOS 2021, Wilkening et. al.

Smaller flash page sizes 
in SSD hardware, byte 

addressable NVM



RecSSD: Efficient NDP for 
Recommendation

82

Question: What is NDP, why does it work, and when does it work? 



RecSSD: Efficient NDP for 
Recommendation

83

Question: What is Near Data Processing, why does it work, and when does it work? 

Move application specific 
computation closer to the 

data



RecSSD: Efficient NDP for 
Recommendation

84

Question: What is NDP, why does it work, and when does it work? 

More efficiently leverage internal 
memory level parallelism, for 
increased internal bandwidth



RecSSD: Efficient NDP for 
Recommendation

85

Question: What is NDP, why does it work, and when does it work? 

Requires data intensive, 
computationally light tasks, which 

preferably reduce to simpler results



RecSSD: Efficient NDP for 
Recommendation

86

General Purpose NDP RecSSD

• Built for a wide array of 
computational tasks

• Typically relies on 
highly customized 
hardware accelerators, 
SSD firmware, host 
drivers, and 
programming 
interfaces

• Built for 
recommendation

• Uses commodity 
hardware

• Built entirely within the 
FTL

• Uses standard NVMe 
interfaces and minimal 
driver modifications

• Minimalist, cost 
efficient, low latency 
design



RecSSD Design Overview

87



RecSSD Design Overview

88



RecSSD Design Overview

89



RecSSD Design Overview

90



RecSSD Design Overview

91



RecSSD Performance

92

Up to 2x inference latency improvement alongside 
conventional caching techniques



Thanks for listening!
Questions?



RecSSD Design Overview

94



RecSSD Design Overview

95



RecSSD Design Overview

96



RecSSD Design Overview

97


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	What is recommendation
	What is recommendation
	What is recommendation
	Why should computer architects care
	Why should computer architects care
	Why should computer architects care
	Why should computer architects care
	Why should computer architects care
	This talk
	This talk
	This talk
	This talk
	Improving recommendation requires cross-stack characterization
	Improving recommendation requires cross-stack characterization
	Improving recommendation requires cross-stack characterization
	Improving recommendation requires cross-stack characterization
	Improving recommendation requires cross-stack characterization
	Characterization
	Characterization
	Characterization
	Characterization
	Slide 28
	Characterization
	Deep Recommendation Model Architecture
	Deep Recommendation Model Architecture
	Deep Recommendation Model Architecture
	Deep Recommendation Model Architecture
	Deep Recommendation Model Architecture
	Characterization
	Systems Platforms Evaluation
	Systems Platforms Evaluation
	Systems Platforms Evaluation
	Systems Platforms Evaluation
	Slide 40
	Characterization
	Operator Breakdowns
	Operator Breakdowns
	Operator Breakdowns
	Operator Breakdowns
	Operator Breakdowns
	Characterization
	TopDown Background
	TopDown Background
	TopDown Pipeline Slot Breakdowns
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Summary of Microarchitectural Effects
	Characterization
	Characterization
	This talk
	Computational Trends in Recommendation
	Computational Trends in Recommendation
	Computational Trends in Recommendation
	High-Capacity Flash vs. DRAM
	High-Capacity Flash vs. DRAM
	High-Capacity Flash vs. DRAM
	High-Capacity Flash vs. DRAM
	High-Capacity Flash vs. DRAM
	High-Capacity Flash vs. DRAM
	Flash SSDs for Recommendation
	Flash SSDs for Recommendation
	Flash SSDs for Recommendation
	Flash SSDs for Recommendation
	Problems with Flash for Recommendation
	Problems with Flash for Recommendation
	Problems with Flash for Recommendation
	Problems with Flash for Recommendation
	RecSSD: Efficient NDP for Recommendation
	RecSSD: Efficient NDP for Recommendation
	RecSSD: Efficient NDP for Recommendation
	RecSSD: Efficient NDP for Recommendation
	RecSSD: Efficient NDP for Recommendation
	RecSSD Design Overview
	RecSSD Design Overview
	RecSSD Design Overview
	RecSSD Design Overview
	RecSSD Design Overview
	RecSSD Performance
	Slide 93
	RecSSD Design Overview
	RecSSD Design Overview
	RecSSD Design Overview
	RecSSD Design Overview

